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Abstract: Recent emphasis on credible causal designs has led to the expectation that scholars justify their research designs by
testing the plausibility of their causal identification assumptions, often through balance and placebo tests. Yet current practice
is to use statistical tests with an inappropriate null hypothesis of no difference, which can result in equating nonsignificant
differences with significant homogeneity. Instead, we argue that researchers should begin with the initial hypothesis that the
data are inconsistent with a valid research design, and provide sufficient statistical evidence in favor of a valid design. When
tests are correctly specified so that difference is the null and equivalence is the alternative, the problems afflicting traditional
tests are alleviated. We argue that equivalence tests are better able to incorporate substantive considerations about what
constitutes good balance on covariates and placebo outcomes than traditional tests. We demonstrate these advantages with
applications to natural experiments.

Replication Materials: The data, code, and any additional materials required to replicate all analyses in this arti-
cle are available on the American Journal of Political Science Dataverse within the Harvard Dataverse Network, at:
https://doi.org/10.7910/DVN/RYNSDG.

Recent debates over the difficulties of causal in-
ference, and the rise of causal empiricism, in the
social sciences have spurred a growing literature

on how to judge the quality of causal research designs
(Austin 2008; Hansen 2008; Dunning 2010; Samii 2016)
and a growing expectation that scholars defend the merits
of their research designs with tests of empirically refutable
implications of the assumptions justifying their inferences
(Sekhon 2009, 503). For example, as evidence in favor of
their designs, observational researchers are expected to
provide evidence of covariate balance, and experimental
researchers run randomization checks for balance on
pretreatment covariates. The procedures used to check
the assumptions justifying a design are just as important
as those used to estimate causal effects (Rubin 2008).

In this article, we argue that “tests of design,” such
as balance and placebo tests, discussed in the next sec-
tion, should be structured so that the responsibility lies
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1Identification assumptions are assumptions about the data-generating process that allow for identification of causal effects, and which
are usually inherently untestable, but often have testable, observable implications.

with researchers to positively demonstrate that the data
are consistent with their identification assumptions or
theory.1 This means that researchers should begin with
the initial hypothesis that the data are inconsistent with
a valid research design, and only reject this hypothesis
if they provide sufficient statistical evidence in favor of
data consistent with a valid design. The conceptual dis-
tinction between beginning with a null hypothesis of no
difference, as is standard in current practice, versus be-
ginning with a null hypothesis of a difference, as we ad-
vocate, may seem small, but the practical implications are
substantial.

To implement our tests of design, we rely on the
large body of literature in biostatistics on equivalence
testing (Wellek 2010; Westlake 1976). We show how to
apply these procedures to tests of design, discussed in
the Mechanics of an Equivalence Test section. We pay
particular attention to the selection of an equivalence

American Journal of Political Science, Vol. 00, No. 0, xxxx 2018, Pp. 1–14

C©2018, Midwest Political Science Association DOI: 10.1111/ajps.12387

1

https://doi.org/10.7910/DVN/RYNSDG


2 ERIN HARTMAN AND F. DANIEL HIDALGO

range, the range within which differences are deemed
inconsequential, as it is a key distinction between equiv-
alence and conventional hypothesis testing. We expand
on the equivalence testing literature by considering ran-
domization inference versions of common equivalence
tests. We also introduce the “equivalence confidence in-
terval,” akin to a confidence interval, which is the mini-
mum range that is supported by the data at the �-level.
This range addresses many concerns in the literature
about selecting an equivalence range by providing a trans-
parent metric on which researchers should defend their
claims. We suggest that researchers focus on defending
this range rather than on the p-value associated with the
test. We also discuss how equivalence tests can be used
in conjunction with multiple testing corrections in the
literature.

We provide applications of equivalence tests in the
Examples section. First, we discuss a natural experiment
conducted by Brady and McNulty (2011) on the cost of
voting associated with distance to a polling place. Fol-
lowing that, we look at a battery of tests by applying our
approach to the Dunning and Nilekani (2013) study of
ethnic quotas. Further examples are included in Appendix
SI-6 in the supporting information.

Throughout this work, we focus on tests of design;
however, equivalence tests are related to the literature on
“negligible effects” (Gross 2014; Rainey 2014). This im-
portant work, building on many others, shows why a lack
of statistically significant difference is not sufficient evi-
dence for showing substantive insignificance. We discuss
the relationship to this literature, and the increased sta-
tistical power of the equivalence t-test focused on in this
article, further in the next section.

Tests of Design
Balance and Placebo Tests

Before discussing how to conduct a balance test, arguably
the most common test of design, we first explore why
researchers are ultimately interested in balance on ob-
servable covariates. The goal of researchers is to provide
evidence that their data are consistent with the identifying
assumptions in their causal research design.

Many causal identification strategies require an as-
sumption that the treatment assignment is uncon-
founded. In experimental settings, this assumption is
met by the randomization conducted by the researcher,
but in observational settings this necessary assump-
tion is inherently untestable in any direct manner. Re-
searchers relying on observational data can unem-
phasize prove their design is unconfounded. As dis-

cussed in Imbens and Rubin (2015, chap. 21), tests
of design can be used to test the plausibility of the
unconfoundedness assumption, even though we can-
not directly test the assumption. If these analyses fail
to provide evidence in favor of an unconfounded
design,

then the unconfoundedness assumption will be
viewed as less plausible than in cases [...] sup-
ported by the data. How much the results of
these analyses change our assessment of the un-
confoundedness assumption depends on spe-
cific aspects of the substantive application at
hand, in particular on the richness of the set of
pre-treatment variables, their number and type.
(Imbens and Rubin 2015)

So, while researchers must assume unconfounded-
ness, our aim is to formulate a statistical test that provides
further evidence for the plausibility of the unconfound-
edness assumption.

We thus frame this as a hypothesis testing problem of
the following form:

H0: The data are inconsistent with the observable
implications of an unconfounded research design.

H1: The data are consistent with the observable
implications of an unconfounded research design

(1)

To formulate a statistical test based on the observable
data, we rely on the fact that the identifying assump-
tions of many causal research designs often have testable
implications that can provide credibility to the research
design. For example, unconfoundedness, when used in
the natural experiment or matching framework, implies
that the distributions of the potential outcomes for both
treatment and control are identical. Although we cannot
directly test the distribution of the potential outcomes,
we can test how similar the groups look on pretreatment
covariates, called a “balance test.” Similarity across a large
number of pretreatment covariates provides strength to
the credibility of the design. The literature argues that
by testing these observable implications, we are provid-
ing evidence consistent with the hypothesis defined in
Equation (1).

Similarly, whereas the key identifying assumption for
experiments, unconfoundedness via randomization, is
true by design, randomization does not guarantee that
any given treatment assignment will result in a treatment
effect estimate sufficiently close to the “truth.” Ensuring
balance on key prognostic variables, by either blocking or
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stratifying, can increase the precision of an estimator. Re-
searchers conduct randomization checks to help defend
against a “bad draw,” in which there is severe imbalance
on key prognostic covariates and the estimate is likely
far from the truth.2 These tests can also be used in reran-
domization procedures to help improve covariate balance
(Morgan and Rubin 2012).3

Balance tests4 check whether the means, or distri-
butions, of pretreatment variables are approximately the
same among treatment and control units. There also exist
omnibus tests for overall balance (Caughey, Dafoe, and
Seawright 2017; Hansen and Bowers 2008). A related test
is a placebo test, which examines the effect of the interven-
tion on a postreatment variable known to be unaffected
by the cause of interest (Rosenbaum 2002, 214).5 If the
intervention were to show a statistically significant corre-
lation with the placebo outcome, then the validity of the
research design is called into question. A common feature
of these two standard tests is that it is incumbent upon
the researcher to demonstrate that the difference between
treated and control units on the pretreatment covariate
or the placebo outcome is substantively small and thus
not indicative of a severely flawed design. For the purpose
of exposition, we will primarily focus on balance tests in
the text of this article.

Current Practice: Lack of Difference versus
Equivalence

To conduct a test of design, we argue that researchers
should begin with the initial hypothesis that the data
are inconsistent with the observable implications of an
unconfounded design– for example, that there is sub-
stantial imbalance in the pretreatment covariates. Only

2“Balance” is, of course, a sample property. In the case of experi-
ments, the null hypothesis of equivalence is true by design. How-
ever, as Student (1938) put it, “it would be pedantic to continue
with [a treatment assignment] known beforehand to be likely to
lead to a misleading conclusion” (Morgan and Rubin 2012).

3In the case of rerandomization, researchers may wish to maximize
balance on nonblocked variables, which could be achieved by re-
quiring that randomization schemes do not exceed a set p-value as
a metric for balance.

4Balance tests are also referred to as randomization checks in the
experimental design literature.

5The definition of a placebo test is less well settled in the literature
than the definition of a balance test. Some scholars appear to use
balance and placebo tests interchangeably. In almost all cases, the
known effect in a placebo test is 0. Another type of placebo test,
which we do not consider, is the use of an alternate treatment,
related to the treatment of interest, but whose effect on the outcome
is known. A classic example of such a placebo test is Di Nardo and
Pischke (1997).

with sufficient data should they reject the null hypothesis
of imbalance in pretreatment covariates and posttreat-
ment placebo outcomes. That is, they should provide
statistically significant evidence to reject their data are
inconsistent with a valid design, which they encode as
a lack of substantively significant differences. However,
common current practice is for researchers to use a
statistical test that employs null of no difference6 between
the two groups as an indirect way of testing whether the
data are consistent with an unconfounded design.7 A
design is deemed consistent with a valid research design
if the statistical test fails to provide evidence in favor of a
difference (i.e., a large p-value).8 This approach could be
loosely described as incorrectly equating “non-significant
difference with significant homogeneity” (Wellek 2010,
3). A high p-value from such a test fails to reject the null
that the two groups are different, which is only indirectly
related to providing evidence that they are the same. This
is not a flaw of the statistical test itself, but rather the
common (mis)interpretation of the test when used as a
test of design. While most researchers understand failure
to reject a null hypothesis does not imply acceptance or
preference for the alternative, current practice implies this
nonetheless.

We propose that researchers use a statistical test con-
sistent with the null in Equation (1), called an equivalence
test. These tests are designed to provide statistical evidence
under a null of difference, against an alternative of equiv-
alence, which is consistent with the null and alternative
hypotheses of Equation (1). The practice of equivalence
testing remains largely absent from hypothesis testing in
the social sciences, and for tests of design in particu-
lar.9 There does exist, however, a large statistical literature
investigating the properties of precisely these types of
tests. Wellek (2010) and Berger and Hsu (1996) provide a
review of the theory and main uses of equivalence testing.

6Some authors, such as Hansen (2008), do note that the actual null
hypothesis researchers wish to test is not one about difference in
the means of some super-population, but rather a statement about
confounding.

7These are typically t-tests or KS-tests.

8There is no concrete rule for sufficient balance. While this is a
clear misinterpretation of the results of a null hypothesis test of
difference, this interpretation is pervasive in the literature. Authors
do, implicitly, acknowledge that these tests are controlling for the
incorrect error, and look for p-values to be higher than typical
statistical significance, with a p-value of 0.15 or 0.2 considered
evidence of good balance.

9There is a healthy literature on the drawbacks of the null hypothesis
test across the social and natural sciences (see reviews in Gill 1999;
Imai, King, Stuart 2008; and Gross 2014), but that literature did
not traditionally provide many practical solutions for balance tests
for applied researchers.
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Fortunately for applied researchers, focusing on equiva-
lence tests allows them to quantify and encode the strength
of their design. Applied researchers will not have to sig-
nificantly change their workflow while benefiting from
transparent, statistical evidence supporting the strength
of their design.

The ambiguity that results from using lack of statisti-
cal significance as evidence in favor of substantive equiva-
lence is a well-documented problem (Gill 1999). The main
issue is that people tend to incorrectly conflate low power
with inconsequential difference or statistical significance
with substantive difference. For example, consider Brady
and McNulty (2011), who exploit a natural experiment in
which the polling places of millions of voters in Los Ange-
les were moved to study the impact of the physical cost of
distance to polling place on turnout. The authors employ
a matching algorithm to match voters on a few impor-
tant covariates to control for small imbalances noticed
within the natural experiment, and the authors report
balance statistics on variables not used in the matching
algorithm as well as the mean differences at the precinct
level.

Brady and McNulty (2011) then note that the mag-
nitude of the differences are very small and unlikely to
be indicative of hidden confounders, yet the size of their
sample makes the traditional tests overly sensitive to these
minute differences.10 However, their argument would
be strengthened with statistical evidence supporting the
strength of their design. We will return to this exam-
ple later, using an equivalence test to evaluate whether
their data provide statistical evidence in favor of their
design. We argue this reflects a conflict between the pur-
pose for which the conventional null hypothesis t-test was
designed and the goal of tests of design, namely, showing
that differences on pretreatment covariates are substan-
tively unimportant.

Equivalence Testing

Operationally, the most important difference between
equivalence testing and tests of difference is whether or
not one needs to make an ex ante decision over what
range of values to define as “similar” versus “different.”
When using equivalence tests, the researcher must specify
what is called an equivalence range, the set of values
within which the difference between the two variables
is substantively inconsequential. One example of a test

10“For the rest of the results, it does not make a great deal of sense
to present t-statistics because the large sample ensures that most
of these differences are statistically significant. Rather, we focus on
their size” (Brady and McNulty 2011, 123).

for equivalence, which provides the easiest intuition,
is the two one-sided test (TOST), which is set up as
follows:

H0:
�T − �C

�
≥ �U or

�T − �C

�
≤ �L

versus H1: �L <
�T − �C

�
< �U ,

where �T and �C refer to the mean of the treated and
control groups, respectively, for a given covariate, and �

is the common standard deviation. The terms �U and �L

refer to the upper and lower bounds for which two groups
are considered equivalent. Choosing appropriate values
for �U and �L is the most important aspect of equivalence
testing, and this is discussed in detail in the Selecting an
Equivalence Range section. The test is conducted using
two one-sided t-tests, and the null of difference is rejected
in favor of equivalence if the p-value for both one-sided
tests is less than �. This test controls the Type I error
of classifying the two sample means as equivalent (as
defined by the equivalence range) when, in fact, they are
not. This is one illustrative example of an equivalence
test.

Figure 1 depicts, graphically, how the traditional bal-
ance tests and equivalence tests differ. In traditional bal-
ance tests, depicted in the left panel, we fail to reject the
null hypothesis that means of two groups are different if
the observed difference falls between the critical values.
The shaded region corresponds to the region in which
the two groups are classified as different when they are,
in fact, the same, and the area corresponds to the level
of the test. However, it is easy to see that this procedure
is not controlling the proper Type I error implied by the
null of a test of a design. In the panel on the right, the
equivalence test will reject the null of a difference of at
least a prespecified size in favor of the alternative of a dif-
ference less than that size when the difference lies in the
shaded region for both tests. We discuss the mechanics
and interpretation of equivalence testing in detail in the
next section, including an equivalence version of the t-
test. Alternative versions, which are designed for different
types of data or sensitive to different departures of the
null, are presented in Appendix SI-1.

Some recent literature in political science has sug-
gested the practice of reversing the standard setup to make
difference the null hypothesis and sameness the alternative
hypothesis (Esarey and Danneman 2015; Gross 2014;
Rainey 2014) for the study of negligible, or substantively
insignificant, effects.11 The negligible, or substantive

11The difference between determining null, or negligible, ef-
fects, and the notion of “substantive significance” is nuanced.
“Substantive significance” addresses the notion that the effect must
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FIGURE 1 Tests of Equivalence versus Tests of Difference
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Note: The left panel depicts the logic of tests of difference under the null hypothesis of
no difference. The right panel depicts the logic of one type of equivalence test—the two
one-sided t-test (TOST)—under the null hypothesis of difference.

significance, approach evaluates the confidence range
of the parameter and determines whether it lies entirely
within (“negligible”) or outside (“substantively signifi-
cant”) the null effect range. Both Rainey (2014) and Gross
(2014) recommend the use of the 100(1–2�)% confi-
dence interval and determining whether this interval lies
entirely within a substantively defined equivalence range.
This interval inclusion method is effectively the same as
the TOST (Berger and Hsu 1996). Asymptotically, our
suggested test and the interval inclusion method are the
same and are effectively indistinguishable with reasonable
sample sizes; however, the equivalence t-test described in
this article is more powerful in smaller samples (Wellek
2010).12 We show, in Appendix SI-5, why the interval
inclusion approach can allow researchers to construct
a statistical test with zero power in some scenarios. We
build on the equivalence tests presented by Rainey (2014)
and Gross (2014) by presenting additional equivalence

lie outside a range of theoretically unmeaningful values (Gross
2014), and “negligible effects” involve providing evidence that
an effect lies within a range of theoretically unmeaningful val-
ues (Rainey 2014). In the parlance of equivalence tests, “negligible
effects” are a straightforward application of an equivalence test,
typically centered on zero, whereas “substantive significance” is of-
ten operationalized as showing that a 100(1 − 2�)% confidence
interval lies entirely outside of an equivalence range. Both of these
types of effects are conceptually similar to “placebo tests,” a type
of equivalence test conducted on a posttreatment variable that is
hypothesized to lie within a specified range.

12The additional power in the equivalence t-test described here
comes from accounting for the noncentral t distribution in the
testing procedure.

tests appropriate for different distributions, and depar-
tures from the null, as well as randomization inference
versions.

Sample Size and Traditional Balance Tests. The most
common argument against traditional balance tests re-
volves around the common conflation of low power with
an incorrect acceptance of the null hypothesis. The prob-
lem arises from the fact that the standard tests are de-
signed to control for a Type I error of classifying the
two group means as different when they are, in fact, the
same.

A desirable property for a statistical test is that the
power to detect the alternative increases in sample size, yet
by conducting balance tests using tests of difference, the
probability of rejecting the null of difference is inversely
related to sample size. In equivalence tests, however, if the
sample size is small, holding all else constant, the t-statistic
will move toward zero. This will increase the p-value of at
least one of the one-sided tests, depending on whether the
observed difference is above or below zero, thus making it
less likely that we will reject a null of difference. Therefore,
the power of the test behaves as we would expect with
respect to sample size. If a researcher wants to put a higher
burden on the tests of design, and thus signal increased
strength in the validity of the design, then the equivalence
range should be decreased. Importantly, regardless of the
researcher’s chosen equivalence range, the equivalence
confidence interval gives the smallest equivalence range
supported by the data at the �-level, which the author
should defend as substantively inconsequential to support
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her design. In Appendix SI-4, we provide simulations
showing that equivalence tests are less likely to tempt
researchers to conflate low power with evidence in favor of
equivalence.

The main argument in defense of traditional hypoth-
esis testing for validity tests is that although small sample
sizes tend to make passing balance tests easier, small sam-
ple sizes also make finding significant treatment effects
less likely. Hansen (2014) discusses how the dependence
on sample size (i.e., the n1/2 factor in the standard error
calculations), appears in both the balance and outcome
tests. Therefore, if one artificially inflates the p-values
of the balance tests with small sample sizes, then the
p-values associated with the outcomes will also be
large, leading to nonsignificant findings. This logic,
while correct for outcomes in which there is a the-
orized nonzero effect of an intervention, would not
hold if a researcher hypothesized a negligible effect.
While it is incorrect to accept a null of no differ-
ence in a low-power situation, an advantage of equiva-
lence tests that are consistent with the implied hypothe-
ses in Equation (1) is they give researchers a means
by which to convey the strength of the design while
avoiding the issue of the ambiguity of lack of statistical
power.

Mechanics of an Equivalence Test

Implementing an equivalence test requires that a re-
searcher define a few parameters, most importantly the
equivalence range.13 This section discusses a common
test of equivalence to explicate the intuition behind this
type of statistical test. We start with practical guidance
for researchers about how to select an equivalence range,
followed by the mechanics of the most common equiva-
lence test, how to interpret the findings, and finally how
these tests can be used with false discovery rate correction
methods.

Selecting an Equivalence Range

Conducting an equivalence test requires the definition of
an equivalence range—[�L , �U ] — in which we can con-
sider the parameter of interest in the two groups to be

13We consider analyses conducted from a frequentist perspective.
Researchers may, instead, wish to use Bayesian analysis, in which
case they would not have to consider the appropriate null hypothe-
sis. These researchers could consider the posterior distribution, and
its relationship to an equivalence range. Wellek (2010), particularly
Sections 2.4 and 3.2, discusses Bayesian methods for equivalence.

substantively inconsequential.14 How should one select
this interval? This is arguably the most important deci-
sion a researcher must make when conducting an equiv-
alence test, and it should be informed by the researcher’s
substantive knowledge.

Substantively Chosen Equivalence Range. Researchers
are best suited to define equivalence ranges based on
their substantive knowledge and considerations of the
data at hand. This ensures that the researcher has con-
sidered what level of difference is most acceptable for
the specified application given concerns about bounding
bias.15

Researchers who have advocated for equivalence type
approaches often tout the value of requiring researchers to
transparently define and defend their equivalence range
on theoretical grounds. As Rainey (2014, 1085) points
out,

Scholars who are cautious about the seeming ar-
bitrariness of m [the equivalence range] should
also note that as the researchers’ choice for m
changes, so too does the substantive claim they
are making. Researchers who hypothesize that
an effect lies between –1 and +1 make a weaker
claim than researchers who argue that the same
effect lies between –0.1 and +0.1. By explic-
itly defining m, researchers alert readers to the
strength of their claims.

Gross (2014, 786) argues that “to convincingly ar-
gue about what results should be deemed significant in
practical terms provides incentive for creative intertwin-
ing of qualitative with quantitative knowledge of subject
matter.” Consistent with previous authors, we consider
the ability of the authors to encode the strength of their
design in their equivalence range as an advantage. More
powerfully, the equivalence confidence interval, described
below, provides a more transparent way for authors to en-
code the same information that mitigates the impact of
this choice.

It should be noted that the trade-off to smaller in-
tervals, however, is power to detect equivalence. If the
intervals are very narrow, then a large amount of data will

14Our discussion typically assumes a symmetric equivalence range
for tests of difference, and the analog for ratio tests; however, tests
of equivalence do not require equivalence ranges to be symmetric.

15Imai, King, and Stuart (2008) argue there is no theoretical level
of imbalance that is acceptable if a researcher is concerned about
bias—which can be of arbitrary size and direction given even small
imbalances. This concern is valid, and it is a primary reason that
researchers should conduct sensitivity analyses to check for the
robustness of their results.
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be required to obtain sufficient power to detect differ-
ences that small. As a result, researchers specifying sub-
stantively defined equivalence ranges should ensure that
they have sufficient power, under the assumption that
the true difference is zero and given their sample size, to
detect equivalence.16 In judging the results of a test of
design, the power of the test can inform our expectations
over the likelihood of rejecting the null of difference for a
given equivalence range.

Sensitivity and Default Equivalence Ranges. Although
we believe that equivalence ranges are best chosen out of
substantive considerations, it is useful to specify default
values for when researchers do not have strong substan-
tive priors for an appropriate range. Although this is an
area in need of validation studies, we provide a set of rec-
ommendations depending on the aim of the researcher
and the available data.

Inherently, researchers are interested in balance as an
observable implication of their design that guards against
potential bias (Hansen 2008). Therefore, we propose re-
searchers, where feasible, consider a sensitivity approach
for defining the equivalence range. When a researcher
is interested in a specific outcome, we recommend the
equivalence range be ± one standardized effect size, using
Glass’s �, which is standardized by the standard devia-
tion in the control group17 on the outcome of interest.
Assuming a perfect, linear correlation between the vari-
able of interest and the outcome, imbalance outside of
this equivalence range could fully explain the effect size.
While this is conservative, pretreatment covariates are
rarely so highly correlated with the outcome;18 it is an
assumption similar to the one made in other sensitivity
analyses (Rosenbaum and Silber 2009). If researchers are
concerned about nonlinearities between the variable and
the outcome, they may wish to scale the standardized
effect size by some nonlinear factor.

When the researcher cannot benchmark against
a standardized effect size, we recommend using � =
±0.36�, where � is the pooled standard deviation of

16Maximal power for equivalence tests is achieved at a true dif-
ference of zero. Although this assumption is justified for tests of
design, maximal power may not be appropriate for tests of negligi-
ble effects.

17We choose Glass’s � in case the treatment has an impact on the
variance. If there is no impact on variance, then this will be more
conservative than a pooled standard deviation (McGaw and Glass
1980).

18If researchers intend to use a linear regression to estimate the
effect, they may wish to use equivalence ranges based on the sensi-
tivity analyses discussed in Hosman, Hansen, and Holland (2010).

the covariate being tested.19 The inspiration for this
default value comes from Wellek (2010) and is con-
firmed by the simulation studies reported in Cochran and
Rubin (1973), which showed that bias of this magnitude
or less tended to produce only minor levels of bias when
the relationship between imbalance and bias was linear,
and outcome and covariates were normally distributed.20

Further recommended default equivalence ranges for dif-
ferent tests, appropriate for different data types, are dis-
cussed in (Wellek 2010, 16).

We stress, however, that these default recommenda-
tions, as well as the sensitivity approach, do not guarantee
any sort of bias-bounding properties. Equivalence ranges
should still be given careful, substantive consideration
for any particular application, and researchers should de-
fend their choices. Regardless of the chosen range, the
researcher should defend the equivalence confidence in-
terval as inconsequentially small.

The Equivalence Confidence Interval. Since there nat-
urally will be disagreement over an appropriate equiv-
alence range, we recommend inverting the equivalence
test to produce an equivalence confidence interval (ECI),
which is akin to a confidence interval. The equivalence
confidence interval is a symmetric interval defined by the
largest difference at which the null hypothesis of differ-
ence is rejected at a prespecified �. The equivalence con-
fidence interval specifies the smallest equivalence range
supported by the observed data.21 In other words, the dif-
ference between 0 and the maximum of the equivalence
confidence interval quantifies the degree of uncertainty
we have over the true degree of imbalance, and the re-
searcher can be assured that at least 100(1–�)% of the
time, the truth will lie within that range.

Researchers should focus on defending differences in
the equivalence confidence interval as inconsequential,
rather than on the p-value associated with the equiva-
lence test. As long as the equivalence confidence inter-
val is reported, readers can judge for themselves whether
this range constitutes equivalence on the pretreatment

19Table SI-1 in the supporting information discusses how to map
from substantive to standardized ranges for each test.

20Cochran and Rubin (1973) show that a caliper of 0.2� when
matching reduces 99% of bias, under certain conditions, and a
caliper of 0.4� reduces 96% of bias. Ho et al. (2006, 221) recom-
mend the strictest range of 0.2 for judging “adequate” balance. Our
simulation studies found 0.2� to be a very conservative range.

21With a very small observed difference, it is possible that the in-
verted range could support an equivalence range of near zero. In
this case, we define the range with the equivalence confidence in-
terval as the observed standardized mean difference, which is a
conservative range.
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covariate or placebo outcome. Unlike the p-value for the
equivalence test, an advantage of the equivalence confi-
dence interval is that it is invariant to the researcher’s
chosen equivalence range, and therefore it provides a
transparent value that researchers and the community
can consider. The advantage of this is that it removes the
researcher’s degree of freedom in defining the equiva-
lence range and forces the researcher to defend the range
as substantively inconsequential for bias.

Conducting the t-test for Equivalence. Just as there are
a variety of tests for evaluating difference, there are many
equivalence tests. We discussed the TOST, which can be
conducted using the interval inclusion method (i.e., de-
termining whether a 100(1 – 2�)% confidence interval
lies entirely within the equivalence range), as one concep-
tually straightforward method for conducting an equiv-
alence test. Romano (2005) shows that the TOST is the
asymptotically uniformly most powerful test. However, as
shown in Appendix SI-5, the test can be structured to be
grossly underpowered in finite samples. For this reason,
we focus on an alternative test that is more powerful in
finite samples.

The most appropriate test statistic depends on the
type of variable and the desired sensitivity to different
types of departures of H0. Because most difference-in-
means tests are conducted using t-tests, we discuss in
detail the analogous t-test for equivalence in this section.
However, other common tests for equivalence that are de-
signed for different distributions, non-normal data, and
parameters of interest, and which may be more appropri-
ate for small samples, do exist. A summary of, and sug-
gested use in cases for, these alternative tests can be found
in Appendix SI-1, and formal notation can be found in
Appendix SI-2.

The equivalence range for the t-test for equivalence is
typically defined in standardized differences rather than
the raw difference in means between the two groups, but
researchers can easily map their substantive ranges to
standardized differences by scaling by the standard de-
viation in the covariate. The standardized difference is a
useful metric when testing for equivalence because, given
some difference between the means of the two distribu-
tions, the two groups are increasingly indistinguishable
as the variance of the distributions grows toward infinity,
and increasingly disjoint as the variance of the distribu-
tions shrinks toward zero (Wellek 2010). We also rec-
ommend the t-test for equivalence because it is the uni-
formly most powerful invariant (UMPI) test for two nor-
mally distributed variables (Wellek 2010, 120). For sim-
plicity, assume that XTi ∼ N(�T , �2), with sample size
m, and XCi ∼ N(�C , �2), with sample size n; then the

equivalence t-test uses the following hypothesis test:

H0:
�T − �C

�
≥ �U or

�T − �C

�
≤ �L

versus

H1: �L <
�T − �C

�
< �U .

We choose �L and �U appropriately, preferably based on
substantive knowledge. Typically, the range of equiva-
lence is symmetric around zero. After defining an equiv-
alence range, the realized test statistic is calculated. The
test statistic is

T =
√

mn(N − 2)/N(X̄T − X̄C ){∑m
i=1 (XTi − X̄T )

2 + ∑n
j=1 (XC j − X̄C )

2
}1/2

.

This test statistic is distributed noncentral t with N − 2
degrees of freedom (Wellek 2010, 120). If we choose a
symmetric equivalence range, it can be shown that we
can conduct a one-sided test using the test statistic |T |,
which is distributed as the square root of a noncentral F ,
with the following rejection rule:

|T | < C�;m,n(�)

with

C�;m,n(�) = F (�; d f1 = 1, d f2 = N − 2,

�2
nc = mn�2/N)

1
2 ,

where F (�, d f1, d f2, �2
nc ) denotes the quantile function

of the noncentral F distribution with level �, degrees
of freedom 1, N − 2, and noncentrality parameter �2

nc =
mn�2/N. If the �s were not symmetric, then we would
have the following rejection rule:

C L
�;m,n(�L , �U ) < T < C U

�;m,n(�L , �U ),

where the critical values must be determined appropri-
ately. If |T | is less than our critical value (or T lies within
the critical values, in the case of asymmetric �s), then
we reject the null hypothesis of a difference between the
means of the two groups in favor of the alternative of
an inconsequential difference. Otherwise, we fail to re-
ject the null of nonequivalence. In addition to the rejec-
tion decision, researchers should also analyze the equiv-
alence confidence interval, which gives the minimum
equivalence range supported by the data. In the case in
which the equivalence confidence interval is small, the
researcher can be confident that the data provide strong
evidence against a substantial difference. If the range
is large, then the researcher may call into question the
equivalence of the means of the two groups. Researchers
should also be aware of the power of their test. Further
discussion of the power of equivalence tests is provided in
Appendix SI-5.
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Interpretation

Equivalence tests are not direct tests of the underlying
identifying assumptions necessary in most causal designs,
so how should researchers interpret the results of these
tests? Unconfoundedness is never directly testable, so re-
searchers have taken two approaches to the interpretation
of balance test results.

First, we could interpret the results from a frequen-
tist perspective, in which the results indicate how much
information the data convey against the null hypothesis,
which in this case is the null of a consequential differ-
ence. A research design that truly is unconfounded does
not require that the treatment and control groups look
identical across all covariates in any given sample, but a
lack of balance in a given sample on important variables
should lead observational researchers to question their
identifying assumption. By making our null hypothesis
that the “data are inconsistent with the observable impli-
cations of an unconfounded design,” a test of equivalence
will provide evidence to reject this null in favor of an al-
ternative that the “data are consistent with the observable
implications of an unconfounded design.” Of course, we
should note this is distinct from the alternative that the
“design is unconfounded,” which is untestable. Though
we do not accept that our design is unconfounded, our
p-values will now encode a metric for how much infor-
mation the data have against the implications of a flawed
design.

Alternatively, we could refrain from interpreting the
statistical implications of the test, and rather ask, “How
similar is similar enough?” Some researchers take this
more extreme view and merely consider balance tests as
a nonstatistical metric for balance assessment (e.g., Imai,
King, and Stuart 2008; Sekhon 2007), in which the re-
sulting p-values are used to maximize observable balance
rather than conduct tests of design, such as in matching
studies.

Additionally, experimentalists may appeal to p-values
as a metric for balance when conducting pretreatment
balance tests, in which they wish to ensure balance on
key prognostic covariates on which they cannot block.
These researchers are not trying to determine whether
their experiment is consistent with an unconfounded
design—this is true by design. However, balance on key
prognostic variables can increase the likelihood that the
resulting estimate will be close to the truth. The equiv-
alence tests discussed here are consistent with this aim
and should have desirable properties that low p-values
encode evidence against a null of substantial difference,
and researchers will not be tempted to conflate low
power with similarity. Additionally, researchers conduct-

ing rerandomization can encode their notion of “similar
enough” into their balance metric via the equivalence
range.

Observational researchers conducting balance checks
are ultimately concerned about bias, particularly as
caused by unobserved confounders. Consequently, what
really matters for tests of design is the unobservable map-
ping between covariate imbalance and bias, and covariate
balance itself is only a proxy for this potential bias.22 Be-
cause this mapping is fundamentally unobservable, our
judgments about an adequate equivalence range must
ultimately depend on substantive considerations. Thus,
when possible, one should specify an equivalence range
small enough to satisfy readers that differences between
two groups contained within the interval are substantively
inconsequential, and thus unlikely to lead to substantively
significant bias.

There is a healthy literature on sensitivity analyses
(e.g., Rosenbaum and Silber 2009; Imbens and Rubin
2015) for assessing possible remaining unmeasureable
confounding in causal effect estimates, and tests of design
do not negate the need for these additional analyses. Tests
of design will provide information on observable imbal-
ance, and under certain assumptions, how that imbal-
ance could impact our estimates. They do not, however,
provide any information about unobservable imbalance,
and for that reason we strongly encourage practitioners
to combine tests of design with sensitivity analyses on the
final estimates when providing evidence to strengthen the
claims of their design.

Randomization Inference Equivalence Tests

A concern of many researchers is that balance is a charac-
teristic of the sample, and therefore that tests of design,
conducted on pretreatment covariates, which reference
a hypothetical super-population, are inappropriate be-
cause they are contradictory to the nonrandom nature
of the observed sample (Austin 2008; Imai, King, and
Stuart 2008). One solution to this issue is to conduct
tests that are conditional on the realized sample using
permutation-based inference, which allows for inferences
about how “differences between groups can be explained
by chance, rather than what differences between sample
and population can be explained by chance” (Hansen and
Bowers 2008, 224). In addition to being conditional on
the observed sample, the permutation tests are exact and

22Without additional assumptions about the mapping between the
covariate and the outcome, any level of imbalance could lead to
bias of arbitrary magnitude and size.
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do not rely on large sample approximations. These exact
tests can be conducted to asses the likelihood of observed
imbalances in the sample without addressing the separate
goal of assessing generalizability.

Using the intersection-union principle, each equiva-
lence test can be tested using the union of two one-sided
exact tests. Permutation tests require an arguably stronger
assumption of a strict null of a constant treatment ef-
fect, and they test for distributional departures from the
strict null. These types of tests are designed to test for ex-
changeability of the two groups, a property that should be
guaranteed by the random or quasi-random design of the
study. Therefore, they are well suited for tests of design,
such as balance and placebo tests, where we explicitly
desire a test of exchangeability. They are also robust to
outliers and sensitive to departures of the null above and
beyond mean differences, such as differences in variabil-
ity within the two groups. To conduct the permutation
version of the parametric tests, we conduct one-sided
tests of the strict null hypothesis equal to the bounds
of the equivalence range, and the overall null hypothesis
of nonequivalence can be rejected if both corresponding
permutation p-values are less than the level of the test,
�.23 Formal properties of permutation equivalence tests
are explored in Arboretti et al. (2018).

Multiple Testing Corrections and
Equivalence Tests

One final concern for researchers conducting tests of de-
sign is that they often conduct tests across a battery of
covariates. In the balance-testing framework, the more
variables, particularly highly prognostic variables, that
researchers can provide balance on, the more evidence
they can provide about the plausibility of the validity
of their design. Sometimes researchers will conduct an
omnibus test for overall balance, since the observable
implication of unconfoundedness is balance across the
joint distribution of the pretreatment covariates. Wellek
(2010) provides the equivalence version of Hotelling’s T 2,
and Fisherian tests, such as those in Hansen and Bowers
(2008) and Caughey, Dafoe, and Seawright (2017), can
be used; however, these tests should also be structured
with an alternative hypothesis of equivalence. While the
omnibus test is not subject to the multiple testing prob-
lem, researchers are often interested in univariate bal-
ance statistics. However, conducting multiple tests can
lead to false positives. With traditional balance tests, if a

23Simulations showing properties of this test are provided in Section
SI-3 in the supporting information.

researcher conducts balance tests across 20 vari-
ables and observes a significant difference for one,
should she discredit that result as chance? Typically,
when conducting multiple tests, researchers can ad-
just for the multiple testing problem by correcting
for the false discovery rate—the expected propor-
tion of falsely rejected hypotheses— or the family-
wise error rate—the probability of committing any
Type I errors (Benjamini and Hochberg 1995). Perhaps
more importantly, if researchers are conducting placebo
tests on outcomes where they expect negligible effects,
an omnibus test may not be appropriate, and researchers
should adjust for the multiple outcomes, placebo and not,
that they are testing.

Multiple testing procedures control the Type I error
rate by appropriately inflating the resulting p-values to
account for the number of tests being performed to con-
trol for either the false discovery rate or the family-wise
error rate. However, these procedures would be inappro-
priate in conjunction with the common way in which
tests of design are conducted—inflating the p-value for
a test-of-difference test would be making the burden of
proof lower for the researcher. The researcher wishes to
control the probability of incorrectly rejecting the null of
difference when a difference is, in fact, present. By using
equivalence tests, the hypothesis test is consistent with the
researchers’ aims, and multiple testing corrections can be
applied directly to the resulting p-values. The ability to
correct for the multiple testing problem is a strength of
the equivalence approach.

Examples
Example: Brady and McNulty (2011)

To illustrate the merits of equivalence tests, we return
to the example of Brady and McNulty (2011). Recall
that Brady and McNulty (2011) argue that some polling
stations in Los Angeles were consolidated “as-if” ran-
dom by the county registrar. Central to their argument
about the quality of their design is that, prior to the
consolidation, voters in treatment and control precincts
had roughly equal “costs of voting,” with distance be-
tween voters’ residence and their polling station be-
ing their chief measure of cost. Balance on this vari-
able is critical, yet the authors find that the pretreat-
ment difference is “highly significant,” although “sub-
stantively rather small” (2011, 123). If the conventional
decision rule over adequate balance is followed, then
one would question the “as-if” random identification
assumption.
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FIGURE 2 Results of Equivalence Tests
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Note: The observed mean difference is the mean of the treated group minus the mean of the control group.
The vertical dashed lines represent the hypothesized equivalence range, defined as the standardized effect size on
the outcome of interest. Gray bars represent the inverted equivalence range supported by the data, presented in
standardized differences. The black diamonds represent the observed standardized difference for the variable of
interest. The equivalence confidence interval is the inverted range, transformed to the scale of the variable. The
p-value corresponds to the false discovery rate corrected p-value of the test of the null equivalence range of one
standardized effect size.

We replicate Brady and McNulty’s balance check us-
ing the two-sample t-test for equivalence. The observed
average difference in distance between voters in treat-
ment and control precincts is 0.034 miles, or 60 yards.
We use an equivalence interval, based on the strict inter-
val suggested in Ho et al. (2006) discussed earlier, of 0.2
standard deviations (amounting to about 0.055 miles, or
98 yards). Note that this is a case in which the equiva-
lence interval used to formulate the null hypothesis could
also be chosen on substantive grounds based on knowl-
edge of factors affecting the decision to turn out that
limit an acceptable distance. We also compute the equiv-
alence confidence interval, which is the smallest equiva-
lence interval supported by the data (� = .05) given the

observed difference between treatment and control
polling stations.

Can we reject the null hypothesis that the mean
difference in the distance to polling stations in 2002 is
greater than � = 0.055 miles? This null is rejected with
a p-value that is essentially zero. Given our prespecified
equivalence interval, we consider the two samples to be
well balanced on this variable. When we invert our test,
we find that the equivalence confidence interval, sup-
ported at the � = 0.05 level, is 0.124 standard devia-
tions, or 0.035 miles (61 yards). Whether 0.035 miles is
of concern and worthy of further adjustment, such as
through regression, should be debated by subject area
experts.
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Example: Dunning and Nilekani (2013)

To illustrate the merits of equivalence tests over tradi-
tional tests, we reconsider the balance tests conducted in
Dunning and Nilekani (2013). In this article, the authors
consider a natural experiment to evaluate the effect of
ethnic quotas on redistribution. Leveraging an ordered
list used to determine villages in which council presiden-
cies were reserved for scheduled castes, the authors note
that villages at the bottom of the list in an earlier election
period, which are assigned quotas, are indistinguishable
from villages at the top of the next list that are not as-
signed quotas until the next election. Using purposive
sampling among these villages, the authors evaluate how
similar these villages are on a number of characteristics,
presented as Table 2 in the original text.

The authors present balance statistics for univariate
tests, and the p-values are generally high, but somewhat
inconclusive for two variables in particular: “Number of
households” (p = 0.09) and “Mean female nonworkers”
(p = 0.12). The authors do not address these individual
tests, but instead argue that an F -test of treatment as-
signment on all the covariates is insignificant. While the
authors convincingly present a battery of evidence that
the design is consistent with “as-if” randomization, the
presented balance tests do not necessarily provide statisti-
cal evidence consistent with their claim. In 2, we conduct
the same balance tests, this time using equivalence tests
and applying an false discovery rate correction.

As can be seen in Figure 2, the equivalence tests indi-
cate that we can reject the null of consequential difference,
making the “as-if” random assumption more plausible.
In this example, we conduct the test using a fairly con-
servative range of 0.36�. The smallest standardized effect
size in the original article is 0.43�, which, if used as the
equivalence range, yields even smaller p-values. An im-
portant contribution of the equivalence method is that
rather than debating whether 0.36� or 0.43� is the ap-
propriate range, we can ask whether ±210 households, or
±433 female nonworkers in a village–the respective ECIs–
are considered substantively inconsequential differences
in these data. We also see that the p-values can now be
adjusted to account for the large number of tests, which
we see as an alternative or supplementary approach to
omnibus tests, depending on the evidence the researcher
wishes to provide.

Conclusion

Researchers’ need to provide evidence for equivalence
between two groups, an observable implication of an un-

confounded design, has always been present, but with
the increased skepticism about traditional research de-
signs in economics, political science, and sociology, we
have seen more encouragement for researchers to expend
great efforts in defending their effect estimates from the
critique that they suffer from remaining confounding.
In many areas of observational work in the social sci-
ences, readers begin with the presumption that the ob-
servational design is flawed and must be convinced by
empirical tests that this is not the case. Experimental-
ists are asked to defend against a “bad draw” that could
lead their realized estimate to be far from the truth. Be-
yond the case of design, researchers are also interested in
providing statistical evidence in favor of theoretical neg-
ligible effects on outcomes. This essay argues that such
skepticism should be directly embedded in the hypothe-
sis tests that are used to persuade readers over the validity
of the design. By using equivalence tests, researchers be-
gin with the assumption that the design is flawed, or that
an effect is not negligible, and this hypothesis is only re-
jected if the data allow it. Furthermore, we believe that
equivalence tests encourage researchers to directly ad-
dress a substantive question about their design: What
is good balance? By requiring the researcher to spec-
ify an equivalence range ex ante, equivalence tests en-
courage a substantive discussion about imbalances that
are small enough to be tolerated versus those that are
not.

Using equivalence tests for tests of designs opens up
an avenue of research for methodologists. Each causal
research design implies a certain test of design. Re-
gression discontinuity designs (RDDs) imply continu-
ity of observable variables, matching and natural exper-
iments imply balance, and difference-in-differences or
synthetic matching implies a similar time trend on pre-
treatment outcomes. Particularly with RDD and synthetic
matching, further work must be done on the most ap-
propriate equivalence test. Relatedly, researchers are of-
ten concerned about the “curse of dimensionality,” or
the fact that testing across multiple dimensions will in-
crease the likelihood of finding an imbalanced variable
(Ho et al. 2006). Further work on multivariate tests for
balance that test for equivalence across a multidimen-
sional space is necessary. The authors are also work-
ing on the development of an R package that will al-
low researchers to conduct equivalence-based tests of
design.

For sample sizes typically used in natural experi-
ments, lab experiments, and related designs in the social
sciences, an equivalence approach may increase the diffi-
culty of passing balance and placebo tests. As evidenced
by our review of natural experiments in Appendix SI-6,
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some studies that currently “pass” tests of design when
the null is sameness will not reject a null of difference.
Failing to reject a null of difference does not by itself, of
course, invalidate a design or indicate hopelessly biased
estimates. Many other elements of a design should go into
an evaluation of its quality, such as the degree to which the
assignment to treatment is exogenous or “as-if” random.
For studies in which the treatment assignment mecha-
nism is well understood and the identifying assumptions
seem quite plausible, our burden of proof should be lower.
In designs exploiting a discontinuity or those relying on
a conditional independence assumption, more definitive
evidence may be required to overcome doubt. For these
cases, equivalence tests can improve on existing practice
by ensuring that we encode our skepticism in the null hy-
pothesis and require the researcher to marshall evidence
against it.
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